This is the second in the Metastatic Modernity video series of about 17 installments (see launch announcement), putting the meta-crisis in perspective as a cancerous episode afflicting humanity and the greater community of life on Earth. This episode provides a cosmological perspective on our insignificance.
As will be the custom for the series, I provide a stand-alone companion piece in written form (not a transcript) so that the key ideas may be absorbed by a different channel. I record unscripted videos in one take—usually keeping the first attempt—which has the advantage of being fresh and natural, but I inevitably leave out all the “right” things I would say if given more time. Writing allows more careful reflection and optimization of how I say things. I’m not as collected in real-time.
The write-up that follows is arranged according to “chapters” in the video, navigable via links in the YouTube description field.
Introduction
This just names the series and myself, acknowledging my professional connection to the topic at hand.
The Big Bang
The Big Bang happened 13.8 billion years ago, which created our space and time. We are not geared to think about a beginning of time and non-existence of space, but that’s what the Big Bang is about. The universe did not “explode” into a pre-existing space, the way our brains are hard-wired to picture any explosion. Space itself is the very thing that was (and is) exploding.
Think of inflating a balloon. Flecks of glitter are sprinkled on the balloon to represent galaxies. As the balloon inflates (space expands), the glitter flecks (galaxies) move apart, though not by moving within or through the rubber (space). Or a loaf of raisin bread expanding in the oven has raisins (galaxies) moving apart as the bread (space) expands between the raisins.
These analogies fail to capture the full essence because our 3-D mental model assumes (in practice requires) a space into which the balloon expands or the loaf enlarges. The real universe has no analog of the oven or the room into which the balloon inflates. The dough/rubber is the entire space—or what we identify as space, anyway—and was once minuscule. Again, our analogies break down since the balloon or bread were never arbitrarily tiny.
Early on, when the universe was tiny, it was also very hot: too hot for atoms or even nuclei to exist—essentially boiled into a plasma soup of quarks, gluons, and electrons. As the universe rapidly expanded and cooled (spreading the same energy over a larger volume), nuclei condensed out of the soup (called Big-Bang Nucleosynthesis, or BBN). This happened within the first 20 minutes after the Big Bang—we can’t accuse it of laziness! About 400,000 years later, it was finally cool enough for electrons to stay put around nuclei, forming neutral atoms and allowing the universe to finally become transparent to the propagation of light (called the epoch of recombination).
Galaxies
Gravity brought friendly atoms together to make dust, planets, stars, and galaxies. We all are personally familiar with the first three of these entities. Galaxies are gravitationally-bound collections of stars (and gas and dust and mostly dark matter, in fact). Our galaxy, the Milky Way, contains about 100 billion stars.
I show an image from the Hubble Space Telescope called the eXtreme Deep Field (XDF) that is littered with galaxies to the edge of our vision. Only one star appears, along the bottom edge toward the right (given away by the diffraction spikes that are apparent from a point source but not from fuzzy things).
Our Sun
Our sun and solar system are roughly 4.5 billion years old—about a third the age of the universe. As mentioned above, it is just one of approximately 100 billion in our galaxy, and it’s not a particularly special or bright one.
When you walk under a dark sky and see lots of stars, how many are intrinsically dimmer than our sun? Not many. Only 15 of the 2,000 most-visible naked-eye stars are dimmer than the sun.
Diversion: Dim Stars
As an unimportant tangent (feel free to skip!), here are the specifics of those 15 stars:
Hip. ID | MV | mV | dist (l.y.) | Bayer desig. |
---|---|---|---|---|
5336 | 5.78 | 5.17 | 24.6 | μ-Cas |
8102 | 5.68 | 3.49 | 11.9 | τ-Cet |
15457 | 5.03 | 4.84 | 29.9 | κ-Cet |
15510 | 5.35 | 4.26 | 19.8 | e-Eri |
16537 | 6.18 | 3.72 | 10.5 | ε-Eri |
19849 | 5.91 | 4.43 | 16.5 | ο2-Eri |
29271 | 5.04 | 5.08 | 33.1 | α-Men |
57443 | 5.06 | 4.89 | 30.1 | |
64924 | 5.09 | 4.74 | 27.8 | |
71681 | 5.70 | 1.35 | 4.39 | α-Cen |
72659 | 5.41 | 4.54 | 21.9 | ξ-Boo |
84405 | 5.44 | 4.33 | 19.5 | 36-Oph |
88601 | 5.50 | 4.03 | 16.6 | p-Oph |
96100 | 5.86 | 4.67 | 18.8 | σ-Dra |
108870 | 6.89 | 4.69 | 11.8 | ε-Ind |
Columns are Hipparcos ID, absolute (visual) magnitude, apparent magnitude, distance in light years, and Bayer designation (for easier finding). Our sun has an absolute magnitude of 4.83. The other 2,000 stars down to apparent magnitude 5.17 (the cutoff here) have absolute magnitudes brighter (lower number than) 4.83. Note that only one bright star appears: Alpha Centauri. The third-brightest star in the sky (behind Sirius and Canopus), Alpha Centauri is actually a double star unresolved by naked eye. The angular separation between the two stars ranges from 2 to 22 arcseconds depending on orbital phase, so can be resolved in a telescope. The one that’s dimmer than the sun is the dimmer of the two, sensibly. I’ve never seen it myself (southern hemisphere). Besides Alpha Centauri, only two of the 15 intrinsically dim stars are brighter than fourth magnitude, and at sub-equatorial declinations are visible from anywhere south of the Arctic Circle.
I picked 2,000 stars rather than the 6,000 often cited (based on the aspirational limit of magnitude 6.5) because: have you ever tried to see a star dimmer than about 5.2 magnitude? It’s very hard, requiring a dark sky and young pupils that can still open wide. Anyway, don’t take my word for it: try for yourself on a real sky!
Most of this detail was skipped in the video, but the main point is: our sun is no super-star: just one of 100 billion and at the tail end of prominence. Our sun would not be on the list above for anyone beyond about 40 light years: very close compared to the 100,000 light years that our galaxy spans.
Scale of the Solar System
Adding insult to injury, we now compare our insignificant sun to a mere chickpea! A chickpea is about a centimeter across, as demonstrated in the video using the enviable MATH RULER. Earth would be about 100 times smaller, or about the diameter of a human hair—which I attach to a piece of tape for demonstration. Holding these two a meter apart—harder than it sounds in a non-mirrored display—captures the scale of the Earth–Sun system. Earth is a mere dust speck that would be hard to even see/notice.
Jupiter is a one-millimeter sand grain that would be 5 meters away. The solar system would require something like a football field (whichever way you wish to define “football”) to accommodate. It’s mostly very extremely empty. The sun itself accounts for 99.85% of the mass in the solar system. Add Jupiter and we’re up to 99.95%. Saturn, Uranus and Neptune account for 80% of the remainder, leaving 0.01% for all the dust specks including Earth. Think about a football field with one very bright (and too hot to touch) chickpea, one grain of sand, three other barely-visible grains, and the rest (including Earth) basically too small to notice. Everything in between in this lush oasis is empty, empty, empty.
Interstellar Emptiness
The next star from our sun (another chickpea) would be 300 kilometers away. More typically in our region off the Milky Way, it’s about 1,000 km between stars as big/bright as the sun, and 500 km between the puniest barely-stars. So our nearest neighbor is atypically close (4.4 light years but would normally be 15 before getting something as big/bright).
In any case, interstellar space makes the football-field solar system look like a hoarder-house, crammed with a few specks as it is. Spend a moment trying to imagine traveling hundreds of kilometers between two chickpeas, with nothing to run across in between! On this scale, our galaxy would be about a thousand times larger than Earth—itself hard to grasp even in this dramatically-shrunken (100-billion-fold) scale.
Galaxy Collision
So empty is interstellar space that when two galaxies, each containing 100 billion stars, collide with each other—as shown in the image of NGC 4567 and 4568—chances are that not a single star strikes another. That’s how empty galaxies are, and how tiny stars are compared to their separations. And galaxies are dense concentrations—swarms—of stars on the scale of the universe. I will note that in a galaxy collision (something I worked on for my PhD project), clouds of gas and dust do slam into one another, so that the overall encounter is not frictionless.
Copernicus to the Fifth
Part of the reason we go through all this is to give a sense of scale but also of insignificance. The Copernican revolution was very important in shaping our views and shaking the foundations of how important we thought we were. We still continue that journey to this day. Tying some of the previous steps together with some new ones, I can formulate five layers to Copernican-like revolutions of insignificance.
Copernican to the First Power
This is the original Copernican Revolution: Earth is not at the center of creation. Earth goes around the sun. Moreover, Earth is a tiny speck compared to the sun: 0.0003% of its mass. In a scale model of the solar system occupying a football field, Earth would be an inconspicuous dust mote.
Copernican Squared
But don’t go thinking the sun is the proper center of it all. The sun is one of about 100 billion stars in the suburbs of the Milky Way galaxy, orbiting the center every 225 million years. It’s not particularly bright or important.
Copernican Cubed
Well, then, is the Milky Way the center? After all, we see galaxies receding from us in all directions. No. Neither is the Milky Way nor any galaxy at the center. The universe, in fact, no more has a center than the surface of a sphere has a center. The Milky Way is one of about 100 billion galaxies in the visible universe (a number that keeps showing up in this post). A few concepts here warrant extra attention.
The Visible Universe
What do I mean “the visible universe?” Well, light has only been able to travel 13.8 billion light years in the 13.8 billion year lifetime of our universe. Looking into the distance is looking back in time. But a being sitting on what we judge to be the edge would see us at its edge, and opposite our direction could see normal universe that is situated beyond our visible horizon—another 13.8 billion light years farther.
It’s like being in the ocean (e.g., snorkeling or scuba diving). You can see maybe 10, 20 or 30 meters depending on water clarity. But if you were to swim to a rock barely discernible on the edge of your vision, you have no doubt that you’d see more stuff beyond it, and the rock you currently float beside would itself become hard to make out. Likewise, on the surface of the earth you can only see so far on its curved surface. That horizon is not the literal edge of the world, but simply the edge of your direct vision. Traveling to that “edge” would reveal more wonders and your current location becomes the edge from the new position.
The universe works similarly. There’s more to it than meets the eye. How much bigger is the real thing than what our time horizon allows us to see? Measurements of the Cosmic Microwave Background reveal that the geometry of our universe is “flat” to about 1%, implying that if it is curved back on itself at all—one possibility—the scale of this curvature is at least 100 times the horizon scale, and possibly very much bigger. Think of it as a patch on a sphere (like the Earth). The larger the sphere, the flatter the patch appears to be. If the universe is at least 100 times as large as the horizon in every direction, then it is at least a million times the volume of our visible patch (linear dimension, cubed).
Flying Away from Us?
One other bit of clean-up. The expansion of the universe indeed appears to be away from us in every direction, which might seem to support the notion that we are at its center. But this is how any galaxy would perceive the state of affairs when the entire space is expanding in every direction. Think of any glitter fleck on the inflating balloon, and imagine how it would describe the motion of other glitter flecks. All are moving away from it. No matter which one you start with, the story will be the same. And the farther the glitter speck in question, the faster it appears to recede (the Hubble Law).
Copernican to the Fourth Power
The clarification of the visible universe above did the heavy lifting for this stage of the Copernican journey. Our visible patch of the universe isn’t even a special region within the much larger space. At least a million times the familiar volume lies outside the part we can see, due to finite light speed and a finite age of the universe. Each sub-region of the whole has the same experience: causally cut off from most of the space in our complete universe.
Copernican to the Fifth Power
The final step is a recognition that our universe may not be the only one. In fact, it would be rather odd for this to be true. Quantum mechanics, inflation cosmology, and string theory are supportive of multiverse notions. According to the string theory Landscape idea, most instances likely don’t share our exact physics and may not even be able to form stable atoms—let alone stars, planets, and life. But some get “lucky,” and by pure selection effect we’d have to find ourselves in one of those (see post on the Anthropic Principle).
It’s Not About Us!
The point of going through all this is that it’s not about us. The universe isn’t here for us. We’re an insignificant component of life on an insignificant speck orbiting an insignificant star in an insignificant galaxy within an insignificant sector of the universe which itself might be an insignificant member of a large collection of disconnected universes.
Wrap-up & Supplements
That, I think, is an important perspective and forms one component of what I wanted to share in the overall series. If this expression of our insignificance is in any way unsettling to you, then I strongly recommend pondering why it would be. Doing so may reveal a critical disconnect in myth vs. reality.
The next episode will look at early life on Earth and the degree to which we still utterly depend on its solutions to the question of how to live.
Views: 1469
In an effort to resolve the "Hubble Tension," the "tired photon hypothesis" attempts to explain dark energy and dark matter in a way that makes the Universe 26 billion years old.
How do you feel about that? I note that your statements about the age of the Universe don't leave a lot of wiggle-room.
I use consensus cosmology, which incidentally does not impact the thrust of my message either way. Tired light is a narrow "explanation" that only makes sense if isolating to observational elements it aims to address, while failing to account for the full suite of observations that more-or-less force a grudging acceptance of dark matter and dark energy. Alternative theories have a very difficult task to simultaneously account for the boatload of different observations, and those that survive to consensus level are tough acts to follow (not asserting as correct, but the strongest candidates out there).
Great work Tom! Loving your blog. This video brings to mind Douglas Adams' Total Perspective Vortex…
"And so he built the Total Perspective Vortex — just to show her.
And into one end he plugged the whole of reality as extrapolated from a piece of fairy cake, and into the other end he plugged his wife: so that when he turned it on she saw in one instant the whole infinity of creation and herself in relation to it."
We all need a sense of proportion sometimes…
Highly recommend this website to get an idea of the Solar System's true scale: https://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
Our Moon is one pixel wide, and there's an option to scroll the page at the true speed of light (so it would take about 5.5 hours for the whole thing to finish scrolling).
Question for you Tom: how do you feel about the idea that in a collapse scenario, our descendants may lose all the knowledge of astronomy and see the sky as a solid sphere again, losing any sense of its true scale and reverting back to mere mythology? It took modern science to show us that reality, and like Carl Sagan I consider that knowledge to be a sort of spiritual gift to mankind. I honestly don't want to live in a world where we forget about that, or are prevented from probing its mysteries further (Thirty Meter Telescope or not).
About the toughest question one can ask. I obviously have a passion for what we have learned, and indeed appreciation for physics, cosmology, evolution, and ecology could shape a whole new way of living in this world in humility and balance. But knowledge and power also has done terrible things. Can we have the good without the bad? Lacking evidence of such, claiming we could is at best unsubstantiated, wild speculation. Can we hang onto some understanding of evolution and knowledge that our sun is a star for eons? Who can say? I hope so, but my hope is irrelevant. In the end it's not a choice: either scientific knowledge is compatible with long-term ecologically-sound living, or it's not. If not, it fades as it must. Does it make sense to lament the loss of something that has no possibility of long-term presence in this world, that seals its own destruction? I'm mot proclaiming that science fits in that category, but recognizing that it very well might.
Yes, a tricky one, for sure. It leaves a choice: do authorities carry on doing science, or concede that it's been (in the aggregate) disastrous? If they carry on, then all the bad stuff will continue (advanced technology, including genetic manipulation, high-tech surveillance and control, armed drones/killer robots, more efficient machines for pillaging Nature (like 'better' trawlers etc), animal experiments, deadly new chemical and biological weapons… the list goes on). There's no way any government will voluntarily stop all that stuff.
On the other hand, how *can* it stop? How can any state tell the public (who've grown up immersed in the culture of 'science is good') that it's all been a terrible mistake, and must cease forthwith?
I, too, had a passion for physics, cosmology etc. (and I also studied it), – but now I believe Gandhi was correct when he said "Machinery is the chief symbol of modern civilization. It represents a great sin".
At the risk of straying OT, the best way to proceed may be to abandon governments and states, altogether. Maybe Nature will insist, in the end…
I would say most of the knowledge will be kept by oral tradition. One thing that humans are very good at is telling stories ,listening to them and imagination. All three needs nothing from our modern life. For generations that is how we pass our knowledge and once modern technology stuff gone we will have more time to do that. As far as I know most of the basic science, engineering and mathematics can be learn and taught simply by careful observation of the surrounding. Our future generations may improve and develop more sensible sciences once they see the world with their naked eyes.
Appreciating the scale of the universe and the relative insignificance of humans, the planet earth, or even the solar system is a two-edged sword.
It puts us in our place and should promote a profound sense of humility. It might make look on our modernity with a newfound appreciation for how silly it is and maybe get serious about saving our home.
But, then again, if we are so insignificant, why not just do what we like, party like it's 1999 and if we destroy the earth and any future for humanity and most other species, so what? We had fun and the hangover doesn't matter any way.
"why not just do what we like, party like it's 1999 and if we destroy the earth and any future for humanity and most other species, so what?"
This question can't be answered without venturing outside of science.
It can't be right to destroy 'most other species'. Do you really feel that it is?
Leaving aside the survival of humans as a reason not to destroy everything, the rest of the natural world has a value which is not measurable by science *at all*.
This is something that can't be explained. It's either known, or it isn't.
No, I don't feel it is right to destroy most other species or the earth's glorious ecosystem. I was just pointing out that the information Dr Murphy is presenting about the scale of the universe is problematic for our consideration of those things.
Either the vast scale of the universe is irrelevant to our earthly ethics, or, if it is relevant, it can be used to 'justify' any course of action. If the vastness of the universe reduces everything earthly to relative insignificance, bad things we might do have no significance either.
I guess that's just a long way of inquiring, "What does the vastness of the universe have to do with anything happening on earth"? Why is it an important part of his video series?
A substantial factor in our present wildly unsustainable trajectory is a sense of hubris; supremacy; pinnacles of evolution; masters; owners; fated rulers; the whole purpose of life, etc. Let's try to temper that with a little humility and insignificance. If we recognize that we're just lucky to be here at all on our speck, maybe we'll drop the conqueror mindset and look for ways to live in long-term reciprocal relationship with a big piece of what makes Earth special: biodiversity. The vastness of the universe is part of that story. But since this message does not compute within the modes of thinking promoted by modernity (demanding stark logical certainty), disconnects can be expected.
Humans may be insignificant, but as far as we know the Earth very much is not, AT LEAST within a few hundred light years. We still have no idea how common life bearing planets are, let alone those with complex multicellular organisms. And keep in mind that it took more than half of the habitability window of our planet (the time between the oceans forming after the Late Heavy Bombardment and when the Sun's expansion will evaporate them) for just that to evolve. Technologically we're only just becoming capable of answering even half of this question.
Hell, we still don't know if this planet is the ONLY life bearing world in the entire cosmos. Sure, I consider that unlikely too, but until the sample size of life-bearing planets is larger than exactly one, we CAN'T say that it is not.
Wow, you've really sped up the post rate (a form of growth? 😉 Always enjoy your insights.
I think larger concerns about purpose and loss of knowledge are like "why" questions about the nature of reality – why is gravity like this and not that.
We can and should be concerned about better and worse trajectories for us and fellow creatures over the near/medium terms where the impacts of our actions are sufficiently predictable.
I do have a science question I've long wondered about: my understanding is that there's no meaningful 3-d edge to the universe – no possible planet where one can see a multitude of light sources over here while over there is completely empty or totally different. Is space curved in such a way that light is looping – such that a big enough telescope would show the back of your head, or at.least resolve the odd photon that a currently nearby particle emitted in the distant past?
First, your understanding of no edge comports with what we currently understand. We don't know the overall geometry of the universe, except that it looks pretty flat. It could be a hypersphere that comes back on itself, but the scale is far to large for a telescope to see itself (light travel time around is far longer than 13.8 billion years). It could also be a hyperbolic infinite space, or just a flat infinite space. I have trouble believing infinities in the real universe, so have a preference for the sphere, but usually the universe fails to consult with me and does whatever the hell it wants.