The Energy-Water Nexus

The principal challenge of this century, in my view, will be adapting to a life without abundant, cheap fossil fuels. It has been the lifeblood of our society, and turns out to have some really fantastic qualities. The jury is still out as to whether we will develop suitable/affordable replacements. But additional challenges loom in parallel. Water is very likely to be one of them, which is especially pertinent in my region. For true believers in the universality of substitution, let me suggest two things. First, come to terms with the finite compactness of the periodic table. Second, try substituting delicious H2O with H2O2. It has an extra oxygen atom, and we all know that oxygen is a vital requisite for life, so our new product will be super-easy to market. Never-mind the hydrogen peroxide taste, and the death that will surely visit anyone foolish enough to adopt this substitution. Sometimes we’re just stuck without substitutes.

Substitution silliness aside, water and energy are intimately related in what has been termed the Energy-Water Nexus (see for example the article by Michael Webber from this conference compilation; sorry about the paywall). We’ll explore aspects of this connection here, touching on pumping water, use of water for the production and extraction of energy, and desalination. As glaciers and snowpack melt and drought becomes more common in the face of climate change, our water practices will need to be modified, hitting energy right in the nexus.

Continue reading

Views: 5578

How Much Dam Energy Can We Get?

[An updated treatment of some of this material appears in Chapter 11 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Having now sorted solar, wind, and tidal power into three “boxes,” let’s keep going and investigate another source of non-fossil energy and put it in a box. Today we’ll look at hydroelectricity. As one of the earliest renewable energy resources to be exploited, hydroelectricity is the low-hanging fruit of the renewable world. It’s steady, self-storing, highly efficient, cost-effective, low-carbon, low-tech, and offers a serious boon to water skiers. I’m sold! Let’s have more of that! How much might we expect to get from hydro, and how important will its role be compared to other renewable resources?

Last week, as soon as I put tidal power into a box labeled “waste of time,” I received some deserved howls of protest. I saw it coming, and had built in words to soften the “waste of time” label. But it was a poor choice from the start. A better set of labels is “abundant,” “potent,” and “niche.” The last could also be thought of as “boutique,” in that it is cute, perhaps decorative, may serve some function, but will never be a heavy lifter. The “potent” label—formerly “useful”— is meant to indicate a source that could supply a healthy fraction (say over a quarter) of our global demand if fully exploited. We will never fully exploit any resource, so the numbers at least need to support ¼-scale before we can believe that it may play a major role.

I should also point out that all along, my approach is to pretend that our goal is to keep up our current energy standards in a post-fossil-fuel world. In the process, we will see just how hard that will be to do. It is by no means impossible, but it’s much more difficult and compromised than most people realize. In the end, it is not clear that we will maintain our current global rate of energy usage: the future is unwritten. On the plus side, some of the approaches I cast into the “niche” box may become “potent” in a scaled-down world. Firewood was once abundant, then moved to potent, and is now a niche. But a reversal of fortunes could change all that.

Continue reading

Views: 24280

Pump Up the Storage

If we adopt solar and wind as major components of our energy infrastructure as we are weaned from fossil fuels, we have to solve the energy storage problem in a big way. An earlier post demonstrated that we do not likely possess enough materials in the world to simply build giant lead-acid (or nickel-based or lithium-based) batteries to do the job. Comments frequently pointed to pumped hydro storage as a far more sensible answer. Indeed, pumped storage is currently the dominant—and nearly only—grid-scale storage solution out there. Here, we will take a peek at pumped hydro and evaluate what it can do for us.

Continue reading

Views: 61180