My Chicken of an EV

Yes, that's my chicken atop my car.

Yes, that’s my chicken atop my car.

A little over two years ago, my wife and I entered a new phase of life in two respects: we got three chickens, and we got a plug-in hybrid vehicle. They have more in common than I would have thought. We see flagging performance in both (egg-laying and battery capacity). We knew the chickens would only last/live for something like 4 years. It’s looking like the EV battery may be similar! Both are happiest pipkining around: plodding about at a leisurely pace. And perhaps like some children, they both disappoint us at times, but we are fond of them all the same. They’re good girls, we tell ourselves.

It may come as no surprise to you that I’ve been collecting data (yes, on both “experiments,” but I’ll spare you egg masses and laying schedules). It takes a little time to do, but recording/resetting the trip meter for every charge, noting charge time and energy delivered, and convincing the wife to go along does pay off, as you will hopefully be convinced.

From the data, I see that the battery capacity is at about 85% of its original condition. While extrapolation is highly risky, it would seem that I can expect zero capacity on the scale of six years, based on its accelerating decline. At this point, we have put about 500 full-cycle-equivalent charges on the battery in about 700 charge events (just shy of one per day, typically about 70% depth). So perhaps it’s not surprising: few batteries can withstand more than 1–2000 charge cycles before giving out.

Want to see some data?

Continue reading

Hits: 632

Man Bites EV: Will EV Bite Back?

[An expanded treatment of some of this material appears in Appendix section D.3 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]


Electric Car: They Might Be Giants

Some time ago, the Chevy Volt attracted my attention. I think the plug-in hybrid concept hits the sweet spot for American drivers, and the Volt’s 35–40 mile electric-only range seemed to be the perfect number. A pure electric vehicle (EV) would not permit my wife’s periodic work-related jaunt to Pasadena, so any battery-powered solution for us must be of the plug-in hybrid electric vehicle (PHEV) variety. The problem, ultimately, was the high price tag (and the hump in the middle of the back seat occupied by the battery). Although I don’t self-identify as being in the “upper class,” our income edges us into the top quintile in the U.S. So for us to decide that the Volt costs too much—despite genuine enthusiasm—seemed to spell trouble (indeed, the average income of Volt owners was claimed to be $175,000). My conclusion was that electric/plug-in cars are out of reach, and could well remain so.

In April of this year, I became aware of the Ford plug-in, called the C-Max Energi (yes, with an “i” at the end!). The C-Max Energi has a 21 mile electric-only range, and gets an EPA rating of 43 miles per gallon (2.3 gal/100 mi; or 5.4 L/100 km). The price tag is approximately $6k cheaper than the Volt, and the back seat passed my wife’s approval. Nonetheless, after carefully considering the C-Max Energi as a replacement for our increasingly ailing car, we decided against springing for one: still too expensive. I was all set to write a Do the Math post to the tune of “Almost bit on a PHEV again.”

But the fact remained that our 11-year old 28 MPG car (bought used) has been costing us a fair bit in maintenance, its reliability increasingly dubious. Replacement loomed. Motivated by an upcoming long-haul road trip, we explored options again, looking at hybrids and the C-Max Energi. In the end—aided by a federal tax credit, a California rebate, and an unfathomably good offer that together knocked $9k off the MSRP—we drove an Energi off the lot under battery power.

It turns out that:

  • the lifetime cost for the PHEV is still higher than other options we considered, but not prohibitively so given credits, rebates, and discounts;
  • the CO2 emissions are cut in half in electric mode (considering upstream electricity production in our region);
  • batteries still stink compared to liquid fuel, and likely always will.

Continue reading

Hits: 133

Survey the People

The futuristic survey (covered in last post) has attracted about 1300 respondents, 900 from DtM, 300 from the Energy Bulletin (now, and a smattering from other places.

I will ultimately be sharing the results, but the habitual readers of the aforementioned sites are perhaps not representative of the population at large.

Thus I would like your help in pushing this out to a broader population.  See if you can get your friends and family members to take the survey, and perhaps even pass the link on to their friends, etc.  I’ve never done this sort of thing before, so do not know what to expect.  But let’s give it a try, yeah?

Here’s the link you want to pass on in whatever form (paste into e-mail, Twitter, link on FaceBook, whatever works):

Thanks for your help—should be very interesting.

Hits: 17

Futuristic Physicists?

One day, sitting around with a group of undergraduate physics students, I listened as one made the bold statement: “If it can be imagined, it can be done.” The others nodded in agreement. It sounded like wisdom. It took me all of two seconds to violate this dictum as I imagined myself jumping straight up to the Moon. I may have asked if the student really thought what he said was true, but resisted the impulse to turn it into an impromptu teaching moment. Instead, I wondered how pervasive this attitude was among physics students and faculty. So I put together a survey and in this post report what I found. The overriding theme: experts say don’t count on a Star Trek future. Ever.

Continue reading

Hits: 212

Battery Performance Deficit Disorder

Batteries fail—as certainly as death and taxes. Rechargeable batteries at least offer the possibility of repeating the cycle, so are in this sense more like recurrent taxes than death. But alas, the story cannot repeat indefinitely. One cheerful thought after the other, yes?  But wait, there’s more… Add to their inevitable demise an overall lackluster performance in battery storage technology, and we have ourselves the makings of a blog post on the failure of batteries to live up to their promises.

To set the stage, the specific energy of gasoline—measured in kWh per kg, for instance—is about 400 times higher than that of a lead-acid battery, and about 200 times better than the Lithium-ion battery in the Chevrolet Volt. We should not expect batteries to rival the energy density delivered by our beloved fossil fuels—ever.

A recent article in APS News reported on an emerging view that batteries are failing to live up to our dreams in the electric car realm:

Despite their many potential advantages, all-electric vehicles will not replace the standard American family car in the foreseeable future. This was the perhaps reluctant consensus at a recent symposium focused on battery research.

Continue reading

Hits: 278

Easing Off the Gas

The Do the Math blog series has built the case that physical growth cannot continue indefinitely; that fossil fuel availability will commence a decline this century—starting with petroleum; that alternative energy schemes constitute imperfect substitutes for fossil fuels; and has concluded that a very smart strategy for us to adopt is to slow down while we sort out the biggest transition humans have ever faced. The idea is to relieve pressure on the system, avoid the Energy Trap, and give ourselves the best possible chance for a successful transformation to a stable future. Since building this case, I have described substantial adaptations in our home energy use, but have not yet addressed the one that bears most directly on the immediate problem: transportation and liquid fuels. Let’s take a look at what can be done here.

Continue reading

Hits: 82

Fossil Fuels: I’m Not Dead Yet

From Monty Python: "Bring out your dead"

Having looked at the major alternatives to fossil fuel energy production (summarized here), we come away with the general sentiment that the easy days of cheap energy are not evidently carried forward into a future without fossil fuels.  That’s right, fossil fuels will be dead and gone.  Is it time to pile them on the cart to be hauled away?

In the slapdash scoring scheme I employed in the alternative energy matrix, the best performers racked up 5 points, whereas by the same criteria, our traditional fossil fuels typically achieved the near-perfect score of 8/10. The only consistent failing is in the abundance measure, which is ultimately what brings us all together here at Do the Math. Fossil fuels are presently used in abundance—85% of current energy use—but this is a short-term prospect, ending within the century. The first effects of decline may be close at hand.  Do I hear talk of nursing homes?

The gulf between fossil fuels and their alternatives tends to be rather large in terms of utility, energy density, practicality, ease of use, versatility, energy return on energy invested, etc. In other words, we do not merrily step off the fossil fuel ride onto the next one by “just” allowing the transition to happen. The alternatives come at a cost, and we will miss the golden days of fossil fuels. But wait…what’s that murmur?  Not dead yet?

Continue reading

Hits: 88

The Alternative Energy Matrix

[An updated treatment of this material appears in Chapter 17 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Breathe, Neo. I’ve been running a marathon lately to cover all the major players that may provide viable alternatives to fossil fuels this century. Even though I have not exhausted all possibilities, or covered each topic exhaustively, I am exhausted. So in this post, I will provide a recap of all the schemes discussed thus far, in matrix form. Then Do the Math will shift its focus to more of the “what next” part of the message.

The primary “mission” of late has been to sort possible future energy resources into boxes labeled “abundant,” “potent” (able to support something like a quarter of our present demand if fully developed), and “niche,” which is a polite way to say puny. In the process, I have clarified in my mind that a significant contributor to my concerns about future energy scarcity is not the simple quantitative scorecard. After all, if it were that easy, we’d be rocking along with a collective consensus about our path forward. Some comments have  asked: “If we forget about trying to meet our total demand with one source, could we meet our demand if we add them all up?” Absolutely. In fact, the abundant sources technically need no other complement. So on the abundance score alone, we’re done at solar, for instance. But it’s not that simple, unfortunately. While the quantitative abundance of a resource is key, many other practical concerns enter the fray when trying to anticipate long-term prospects and challenges—usually making up the bulk of the words in prior posts.

For example, it does not much matter that Titan has enormous pools of methane unprotected by any army (that we know of!). The gigantic scale of this resource makes our Earthly fossil fuel allocation a mere speck. But so what? Practical considerations mean we will never grab this energy store. Likewise, some of our terrestrial sources of energy are super-abundant, but just a pain in the butt to access or put to practical use.

In this post, we will summarize the ins and outs of the various prospects. Interpretation will come later. For now, let’s just wrap it all up together.

Continue reading

Hits: 521

MPG of a Human

On Do the Math, three previous posts have focused on transportation efficiency of gasoline cars, electric cars, and on the practicalities of solar-powered cars. What about personal-powered transport—namely, walking and biking? After stuffing myself over Thanksgiving, I am curious to know how potent human fuel can be. How many miles per gallon do we get as our own engines of transportation?

Okay, the “miles” part is straightforward. And we can handle the “per.” But what’s up with the gallon? A gallon of what? Here we have all kinds of options, as humans are flex-fuel machines. But food energy is not much different from fossil fuel energy in terms of energy density.

Continue reading

Hits: 2415

A Solar-Powered Car?

If you like the sun, and you like cars, then I’m guessing you’d love to have a solar-powered car, right? This trick works well for chocolate and peanut butter, but not so well for garlic bread and strawberries. So how compatible are cars with solar energy? Do we relish the combination or spit it out? Let’s throw the two together, mix with math, and see what happens.

What Are Our Options?

Short of some solar-to-liquid-fuel breakthrough—which I dearly hope can be realized, and described near the end of a recent post—we’re talking electric cars here. This is great, since electric drive trains can be marvelously efficient (ballpark 85–90%), and immediately permit the clever scheme of regenerative braking.

Continue reading

Hits: 632