My Great Hope for the Future

So far on Do the Math, I’ve put out a lot of negative energy—whatever that means. Topics have often focused on what we can’t do, or at least on the failings or difficulties of various ambitious plans. We can’t expect indefinite growth—whether in energy, population, or even growth of the economic variety. It is not obvious how we maintain our current standard of living once fossil fuels begin their inexorable decline this century. And as I’ve argued before, achieving a steady-state future implies approximate equity among the peoples of the Earth, so that maintaining today’s global energy consumption translates to living at one-fifth the power currently enjoyed in the U.S.

In this post, I offer a rosy vision for what I think we could accomplish in the near term to maximize our chances of coming out shiny and happy on the tail end of the fossil fuel saga. I’m no visionary, and this exercise represents a stretch for a physicist. But at least I can sketch a low-risk, physically viable route to the future. I can—in part—vouch for its physical viability based on my own dramatic reductions in energy footprint. I cannot vouch for the realism of the overall scheme. It’s a dream and a hope—a fool’s hope, really—and very, very far from a prediction or a blueprint. I’ve closed all the exits to get your attention. Now we’ll start looking at ways to nose out of our box in a safe and satisfying way.

Continue reading

Hits: 828

The Way is Shut

When I first approached the topic of societal energy in 2004, I became aware for the first time that our energy future was not in the bag, and proceeded to explore alternative after alternative to judge the viability and potential pitfalls of various options. I have retraced my steps in Do the Math posts, exposing the scales at which different energy sources might contribute, and the practical complexities involved. My spooky campfire version of the story, a la Tolkien: The Way is Shut.

Alright, I’m overstating things a bit. The good news is that there do exist energy flows and sources that qualify as abundant or at least potent. However, many of the alternatives represent ways to produce electricity, which applies only to about one-third of our current energy demand. The immediate threat is therefore the short term liquid fuels crunch we will see when the global petroleum decline commences within the decade.

In this post, I will reflect on the lessons we learn after having characterized the various alternatives to fossil fuels. There will still be some tidying-up to do on energy alternatives not treated thus far, but by and large the nature of content on Do the Math is about to pivot toward addressing the question “What can we do now?” In some sense, a common thread so far has been: “easier said than done,” or “don’t count on that technology saving our bacon.” I’ve closed all the exits to get your attention. We’re boxed in. Okay, the exits aren’t really closed: they’re just not as wide open as they would need to be for me to be complacent. So now we’ll start looking at ways to nose out of our box in a safe and satisfying way.

Continue reading

Hits: 481

The Future Needs an Attitude Adjustment

Festivus Pole.

Kids these days. When I was a lad, tantrums were redressed with a spanking. Heck, spankings (at school) were answered by further spanking (at home). In polite company, we might apply the euphemism “attitude adjustment” to mask the unpleasant image of a bawling kid bent over the knee getting red in the tail. I’m not going to wade into the issue of whether or not such treatment is the most effective way to shape responsible adults, but I will say that I think our society needs some sort of attitude adjustment when it comes to expectations of our future. I’ll take a pause from the renewable energy juggernaut recently featured on Do the Math and offer some seasonal scolding. Think of it as my “airing of grievances” component of Festivus: “a holiday for the rest-of-us,” as introduced on Seinfeld.

Continue reading

Hits: 954

Growth Has an Expiration Date

Just a quickie.  A few weeks back, I tried to cram four Do the Math posts into a 20 minute talk, delivered at the Compass Summit.  For those of you who would rather watch 23 minutes of video than sit down to read four posts, here is a link to the video of the talk.  Perhaps you’ll see why I should stick to writing.

Growth Has an Expiration Date from Compass Summit on FORA.tv

Hits: 125

The Energy Trap

[This topic also appears in Chapter 18 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Many Do the Math posts have touched on the inevitable cessation of growth and on the challenge we will face in developing a replacement energy infrastructure once our fossil fuel inheritance is spent. The focus has been on long-term physical constraints, and not on the messy details of our response in the short-term. But our reaction to a diminishing flow of fossil fuel energy in the short-term will determine whether we transition to a sustainable but technological existence or allow ourselves to collapse. One stumbling block in particular has me worried. I call it The Energy Trap.

In brief, the idea is that once we enter a decline phase in fossil fuel availability—first in petroleum—our growth-based economic system will struggle to cope with a contraction of its very lifeblood. Fuel prices will skyrocket, some individuals and exporting nations will react by hoarding, and energy scarcity will quickly become the new norm. The invisible hand of the market will slap us silly demanding a new energy infrastructure based on non-fossil solutions. But here’s the rub. The construction of that shiny new infrastructure requires not just money, but…energy. And that’s the very commodity in short supply. Will we really be willing to sacrifice additional energy in the short term—effectively steepening the decline—for a long-term energy plan? It’s a trap!

Continue reading

Hits: 3495

Sustainable Means Bunkty to Me

What? Don’t know what bunkty means? Now you know how I feel about the word “sustainable.” My paper towels separate into smaller segments than they once did. It’s sustainable! These potato chips arrive in a box that says SUSTAINABLE in big letters on the side. I’m eating green!  When I’m in a hotel, I hang the towel back up rather than throw it on the floor (would I ever do this anyway?) and the placard says I’m being sustainable. Can it be that easy? I claim that not one among our host of 7 billion really knows what our world would look like if we lived in a truly sustainable fashion.  Let’s try to come to terms with what it might mean.

I think most would agree that the rapid depletion we currently witness in natural resources and services, climate stability, water availability, soil quality, and fisheries—to name a few—suggests that we do not live sustainably at present. We can not expect to keep up our current practices with 7 billion people in this world without some major changes.

Continue reading

Hits: 1070

Discovering Limits to Growth

After inaugurating the Do the Math blog with two posts on the limits to physical and economic growth, I thought it was high time that I read the classic book The Limits to Growth describing the 1972 world computer model by MIT researchers Meadows, Meadows, Randers, and Behrens. I am deeply impressed by the work, and I am compelled to share the most salient features in this post.

To borrow a word from a comment on the Do the Math site, I’m gobsmacked by how prescient some of the statements and reflections in the book are. Leaving aside remarkably good agreement in the anticipated world population and CO2 levels thirty years out (can’t fake this), I am amazed that many of the thoughts and conclusions I have formed over the past several years are not at all new, but were in black-and-white shortly after I was born. Continue reading

Hits: 979

Does the Logistic Shoe Fit?

U.S. total energy 1650-present (logarithmic)

This is a quick update regarding the first plot shown in the galactic scale energy post. A reader, Chris, called attention to the obvious departure from exponential growth in recent decades. The post required turning a blind eye to many practical issues (like population saturation) in order to entertain indefinite growth, serving to highlight the absurdity of the notion. But Chris goaded me into paying more attention to the departure from the exponential track in the actual data, and here are the results of a logistic approach. Continue reading

Hits: 337

Can Economic Growth Last?

[An updated treatment of this material appears in Chapter 2 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

As we saw in the previous post, the U.S. has expanded its use of energy at a typical rate of 2.9% per year since 1650. We learned that continuation of this energy growth rate in any form of technology leads to a thermal reckoning in just a few hundred years (not the tepid global warming, but boiling skin!). What does this say about the long-term prospects for economic growth, if anything?

Gross World Product

World economic growth for the previous century, expressed in constant 1990 dollars. For the first half of the century, the economy tracked the 2.9% energy growth rate very well, but has since increased to a 5% growth rate, outstripping the energy growth rate.

The figure at left shows the rate of global economic growth over the last century, as reconstructed by J. Bradford DeLong. Initially, the economy grew at a rate consistent with that of energy growth. Since 1950, the economy has outpaced energy, growing at a 5% annual rate. This might be taken as great news: we do not necessarily require physical growth to maintain growth in the economy. But we need to understand the sources of the additional growth before we can be confident that this condition will survive the long haul. After all, fifty years does not imply everlasting permanence.

The difference between economic and energy growth can be split into efficiency gains—we extract more activity per unit of energy—and “everything else.” The latter category includes sectors of economic activity not directly tied to energy use. Loosely, this could be thought of as non-manufacturing activity: finance, real estate, innovation, and other aspects of the “service” economy. My focus, as a physicist, is to understand whether the impossibility of indefinite physical growth (i.e., in energy, food, manufacturing) means that economic growth in general is also fated to end or reverse. We’ll start with a close look at efficiency, then move on to talk about more spritely economic factors. Continue reading

Hits: 2698

Galactic-Scale Energy

[An updated treatment of this material appears in Chapter 1 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Since the beginning of the Industrial Revolution, we have seen an impressive and sustained growth in the scale of energy consumption by human civilization. Plotting data from the Energy Information Agency on U.S. energy use since 1650 (1635-1945, 1949-2009, including wood, biomass, fossil fuels, hydro, nuclear, etc.) shows a remarkably steady growth trajectory, characterized by an annual growth rate of 2.9% (see figure). It is important to understand the future trajectory of energy growth because governments and organizations everywhere make assumptions based on the expectation that the growth trend will continue as it has for centuries—and a look at the figure suggests that this is a perfectly reasonable assumption.  (See this update for nuances.)

U.S. total energy 1650-present (logarithmic)

Total U.S. Energy consumption in all forms since 1650. The vertical scale is logarithmic, so that an exponential curve resulting from a constant growth rate appears as a straight line. The red line corresponds to an annual growth rate of 2.9%. Data source: EIA.

Growth has become such a mainstay of our existence that we take its continuation as a given. Growth brings many positive benefits, such as cars, television, air travel, and iGadgets. Quality of life improves, health care improves, and, aside from a proliferation of passwords to remember, life tends to become more convenient over time. Growth also brings with it a promise of the future, giving reason to invest in future development in anticipation of a return on the investment. Growth is then the basis for interest rates, loans, and the finance industry.

Because growth has been with us for “countless” generations—meaning that everyone we ever met or our grandparents ever met has experienced it—growth is central to our narrative of who we are and what we do. We therefore have a difficult time imagining a different trajectory.

This post provides a striking example of the impossibility of continued growth at current rates—even within familiar timescales. For a matter of convenience, we lower the energy growth rate from 2.9% to 2.3% per year so that we see a factor of ten increase every 100 years. We start the clock today, with a global rate of energy use of 12 terawatts (meaning that the average world citizen has a 2,000 W share of the total pie). We will begin with semi-practical assessments, and then in stages let our imaginations run wild—even then finding that we hit limits sooner than we might think. I will admit from the start that the assumptions underlying this analysis are deeply flawed. But that becomes the whole point, in the end.

A Race to the Galaxy

I have always been impressed by the fact that as much solar energy reaches Earth in one hour as we consume in a year. What hope such a statement brings! But let’s not get carried away—yet.

Only 70% of the incident sunlight enters the Earth’s energy budget—the rest immediately bounces off of clouds and atmosphere and land without being absorbed. Also, being land creatures, we might consider confining our solar panels to land, occupying 28% of the total globe. Finally, we note that solar photovoltaics and solar thermal plants tend to operate around 15% efficiency. Let’s assume 20% for this calculation. The net effect is about 7,000 TW, about 600 times our current use. Lots of headroom, yes? Continue reading

Hits: 5939