Spectral Extravaganza: The Ultimate Light

What do you get when you cross an astronomically-inclined physicist with concerns over energy efficiency in lighting? Spectra. Lots and lots of spectra. In this post, we’ll become familiar with spectral characterization of light, see example spectra of a number of household light sources, and I’ll even throw in some mind-blowing photos. In the process, we’ll evaluate just how efficient lighting could possibly be, along the way understanding something about the physiology of light perception and the definition of the increasingly ubiquitous lighting measure called the lumen. Buckle your physics seat-belt and prepare to think like a photon.

Continue reading

Views: 2399

Supermoon Disappointment

Putting on my astronomer hat, as one whose main research focus involves measuring the distance between the Earth and Moon, I feel compelled to “speak out” about the “supermoon” hype that crops up periodically.

Last night’s full moon was touted to be a “supermoon”—larger than normal.  As a result, many folks made it a point to watch the Moon rise.  I love the fact that people are paying attention to the Moon, getting outside, and enjoying the serene experience of watching the Moon creep over the horizon.  What I don’t like is that the hype leads to an overall sense of disappointment in many.  Is the campaign a net positive, or a net negative?  I don’t know.

In this post, we’ll look at the numbers and see just how special the supermoon is.

Continue reading

Views: 1281

My Neighbors Use Too Much Energy

[An updated treatment of some of this material appears in Chapter 20 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

From www.christmasvacationcollectibles.com

I have described in a series of posts the efforts my wife and I have made to reduce our energy footprint on a number of fronts. The motivation stems from our perception that the path we are on is not sustainable. Our response has been to pluck the low-hanging fruit, demonstrating to ourselves that we can live a “normal” life using far less energy than we once did. We are by no means gold medalists in this effort, but our savings have nonetheless been substantial. Now we shift the burden off of ourselves, and onto our neighbors. You don’t have to run faster than the bear—just faster than the other guy. In this post, I summarize our savings relative to the national average, add a few more tidbits not previously covered, put the savings in context, and muse about ways to extend the reach of such efforts.

Continue reading

Views: 2854

Flex-Fuel Humans

[An updated treatment of some of this material appears in Chapter 20 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

If you’re one of those humans who actually eats food, like I am, then a non-negligible part of your energy allocation goes into food production. As an approximate rule-of-thumb, each kilocalorie ingested by Americans consumes 10 kilocalories of fossil fuel energy to plant, fertilize, harvest, transport, and prepare. The energy investment can easily exceed a person’s household energy usage—as is the case for me. But much like household energy, we control what we stick in our mouths, and can make energy-conscious choices that result in substantial reductions of energy consumption. I now call myself a flexitarian, a term acknowledging that my body is a flex-fuel vehicle, but also that I need not be rigid about my food choices in order to still make a substantial impact on the energy front.

An earlier post on how many miles per gallon a human gets while walking or biking touched on the fact that fossil fuels undergird our food supply. As a result, walking to the grocery store effectively uses as much fossil fuel as would a typical sedan. The lesson is not to walk less, but to change that 10:1 ratio for the better by eating more smartly. Once upon a time, we put less than one kilocalorie of energy into food production per kilocalorie obtained (or else we and our draft animals would have starved to death). So the 10:1 ratio is not at all inescapable, and depends strongly on the foods we choose to eat.

Continue reading

Views: 31428

Easing Off the Gas

The Do the Math blog series has built the case that physical growth cannot continue indefinitely; that fossil fuel availability will commence a decline this century—starting with petroleum; that alternative energy schemes constitute imperfect substitutes for fossil fuels; and has concluded that a very smart strategy for us to adopt is to slow down while we sort out the biggest transition humans have ever faced. The idea is to relieve pressure on the system, avoid the Energy Trap, and give ourselves the best possible chance for a successful transformation to a stable future. Since building this case, I have described substantial adaptations in our home energy use, but have not yet addressed the one that bears most directly on the immediate problem: transportation and liquid fuels. Let’s take a look at what can be done here.

Continue reading

Views: 3186

Exponential Economist Meets Finite Physicist

[An updated treatment of some of this material appears in Chapter 2 of the Energy and Human Ambitions on a Finite Planet (free) textbook, also mirrors a 2022 article in Nature Physics..]

Some while back, I found myself sitting next to an accomplished economics professor at a dinner event. Shortly after pleasantries, I said to him, “economic growth cannot continue indefinitely,” just to see where things would go. It was a lively and informative conversation. I was somewhat alarmed by the disconnect between economic theory and physical constraints—not for the first time, but here it was up-close and personal. Though my memory is not keen enough to recount our conversation verbatim, I thought I would at least try to capture the key points and convey the essence of the tennis match—with some entertainment value thrown in.

Cast of characters: Physicist, played by me; Economist, played by an established economics professor from a prestigious institution. Scene: banquet dinner, played in four acts (courses).

Note: because I have a better retention of my own thoughts than those of my conversational companion, this recreation is lopsided to represent my own points/words. So while it may look like a physicist-dominated conversation, this is more an artifact of my own recall capabilities. I also should say that the other people at our table were not paying attention to our conversation, so I don’t know what makes me think this will be interesting to readers if it wasn’t even interesting enough to others at the table! But here goes…

Continue reading

Views: 85197

Heat those Feet!

Infrared image of a cold left foot (25°C with 19°C toes), compared to a warm (33°C) right foot.

One of the more bothersome aspects of living in an unheated house (with tile floors in much of the house, in my case) is having cold feet. Spring has arrived, so perhaps this post is not as timely as it might otherwise have been. But let’s consider the energy costs of various approaches to warming up cold feet.

The main problem I have with cold feet is that they make it hard to go to sleep. Otherwise cold feet don’t seem to distract me from normal activities. But let’s say that your feet are cold and that you cannot stand it any longer, and therefore must warm them up. I’ll look at a number of options, assessing how much energy is consumed for each. We’ll try hot water in the sink, a space heater (or blow dryer) under a blanket, a heating pad wrapped around the feet, or good-old metabolic energy.

Continue reading

Views: 17670

The Phantoms I’ve Killed

Two weeks ago, I described my factor-of-five reduction of natural gas usage at home, mostly stemming from a decision not to heat our San Diego house. We have made similar cuts to our use of utility electricity, using one-tenth the amount that comparable San Diego homes typically consume. In this post, I will reveal how we pulled this off…with plots. Some changes are simple; some require behavioral changes; some might be viewed as outright trickery.

Continue reading

Views: 12677

OilPrice Interview

If you’re interested, oilprice.com posted an interview polling my take on energy alternatives and related issues.  Regular Do the Math readers have likely heard much of it before, but perhaps will enjoy a different packaging…

Views: 951

Space-Based Solar Power

A solar panel reaps only a small portion of its potential due to night, weather, and seasons, simultaneously introducing intermittency so that massive storage is required to make solar power work at a large scale. A perennial proposition for surmounting these impediments is that we launch solar collectors into space—where the sun always shines, clouds are impossible, and the tilt of the Earth’s axis is irrelevant. On Earth, a flat panel inclined toward the south averages about 5 full-sun-equivalent hours per day for typical locations, which is about a factor of five worse than what could be expected in space. More importantly, the constancy of solar flux in space reduces the need for storage—especially over seasonal timescales. I love solar power. And I am connected to the space enterprise. Surely putting the two together really floats my boat, no? No.

I’ll take a break from writing about behavioral adaptations and get back to Do the Math roots with an evaluation of solar power from space and the giant hurdles such a scheme would face. On balance, I don’t expect to see this technology escape the realm of fantasy and find a place in our world. The expense and difficulty are incommensurate with the gains.

Continue reading

Views: 10692