The Alternative Energy Matrix

[An updated treatment of this material appears in Chapter 17 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Breathe, Neo. I’ve been running a marathon lately to cover all the major players that may provide viable alternatives to fossil fuels this century. Even though I have not exhausted all possibilities, or covered each topic exhaustively, I am exhausted. So in this post, I will provide a recap of all the schemes discussed thus far, in matrix form. Then Do the Math will shift its focus to more of the “what next” part of the message.

The primary “mission” of late has been to sort possible future energy resources into boxes labeled “abundant,” “potent” (able to support something like a quarter of our present demand if fully developed), and “niche,” which is a polite way to say puny. In the process, I have clarified in my mind that a significant contributor to my concerns about future energy scarcity is not the simple quantitative scorecard. After all, if it were that easy, we’d be rocking along with a collective consensus about our path forward. Some comments have  asked: “If we forget about trying to meet our total demand with one source, could we meet our demand if we add them all up?” Absolutely. In fact, the abundant sources technically need no other complement. So on the abundance score alone, we’re done at solar, for instance. But it’s not that simple, unfortunately. While the quantitative abundance of a resource is key, many other practical concerns enter the fray when trying to anticipate long-term prospects and challenges—usually making up the bulk of the words in prior posts.

For example, it does not much matter that Titan has enormous pools of methane unprotected by any army (that we know of!). The gigantic scale of this resource makes our Earthly fossil fuel allocation a mere speck. But so what? Practical considerations mean we will never grab this energy store. Likewise, some of our terrestrial sources of energy are super-abundant, but just a pain in the butt to access or put to practical use.

In this post, we will summarize the ins and outs of the various prospects. Interpretation will come later. For now, let’s just wrap it all up together.

Continue reading

Views: 79330

Nuclear Fusion

[An updated treatment of some of this material appears in Chapter 15 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Ah, fusion. Long promised, both on Do the Math and in real life, fusion is regarded as the ultimate power source—the holy grail—the “arrival” of the human species. Talk of fusion conjures visions of green fields and rainbows and bunny rabbits…and a unicorn too, I hear. But I strike too harsh a tone in my jest. Fusion is indeed a stunningly potent source of energy that falls firmly on the reality side of the science fiction divide—unlike unicorns. Indeed, fusion has been achieved (sub break-even) in the lab, and in the deadliest of bombs. On the flip side, fusion has been actively pursued as the heir-apparent of nuclear fission for over 60 years. We are still decades away from realizing the dream, causing many to wonder exactly what kind of “dream” this is.

Our so-far dashed expectations seem incompatible with our sense of progress. Someone born in 1890 would have seen horses give way to cars, airplanes take to the skies, the invention of radio, television, and computers, development of nuclear fission, and even humans walking on the Moon by the age of 79. Anyone can extrapolate a trajectory, and this trajectory intoned that fusion would arrive any day—along with colonies on Mars. Yet we can no longer buy a ticket to cross the Atlantic at supersonic speeds, and the U.S. does not have a human space launch capability any more. Even so, fusion remains “just around the corner” in many minds.

Continue reading

Views: 68414

The Motion of the Ocean

With the exception of tidal energy, our focus thus far has been on land-based energy sources. Meanwhile, the ocean absorbs a prodigious fraction of the Sun’s incident energy, creating thermal gradients, currents, and waves whipped up by winds. Let’s put some scales on the energetics of these sources and see if we may turn to them for help. We’ve got our three boxes ready: abundant, potent, and niche (puny). Time to do some sorting!

Continue reading

Views: 3685

Basking in the Sun

Who hasn’t enjoyed heat from the sun? Doing so represents a direct energetic transfer—via radiation—from the sun’s hot surface to your skin. One square meter can catch about 1000 W, which is comparable to the output of a portable space heater. A dark surface can capture the energy at nearly 100% efficiency, beating (heating?) the pants off of solar photovoltaic (PV) capture efficiency, for instance. We have already seen that solar PV qualifies as a super-abundant resource, requiring panels covering only about 0.5% of land to meet our entire energy demand (still huge, granted). So direct thermal energy from the sun, gathered more efficiently than what PV can do, is automatically in the abundant club. Let’s evaluate some of the practical issues surrounding solar thermal: either for home heating or for the production of electricity.

Continue reading

Views: 29183

Warm and Fuzzy on Geothermal?

[An updated treatment of some of this material appears in Chapter 16 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

The Earth started its existence as a red-hot rock, and has been cooling ever since. It’s still quite toasty in the core, and will remain so for billions of years, yet. Cooling implies a flow of heat, and where heat flows, the possibility exists of capturing useful energy. Geysers and volcanoes are obvious manifestations of geothermal energy, but what role can it play toward satisfying our current global demand? Following the recent theme of Do the Math, we will put geothermal in one of three boxes labeled abundant, potent, or niche (puny). Have any guesses?

Continue reading

Views: 3116

Nuclear Options

[An updated treatment of this material appears in Chapter 15 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

simpsons.wikia.com

A recent thrust on Do the Math has been to sort our renewable energy options into “abundant,” “potent,” and “niche” boxes. This is a reflection of my own mathy introduction to the energy scene, the result of which convinced me that we face giant—and ultimately insurmountable—hurdles in our quest to continue a growth trajectory. It is not obvious that we will even manage to maintain today’s energy standards. We have many more sources/topics to cover before moving on to the “now what” phase of Do the Math. Meanwhile, requests for me to address the nuclear story are mounting. So before readers become mutinous, I should interrupt the renewable thread to present my nuclear reaction. It’s a rich topic, and in this post I will only give a tutorial introduction and my big-picture take. A single post can’t possibly address all the nuances, so my main goal here is to demystify what nuclear is all about, build a vocabulary, and set a foundation for further discussion in later posts.

Continue reading

Views: 31868

How Much Dam Energy Can We Get?

[An updated treatment of some of this material appears in Chapter 11 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Having now sorted solar, wind, and tidal power into three “boxes,” let’s keep going and investigate another source of non-fossil energy and put it in a box. Today we’ll look at hydroelectricity. As one of the earliest renewable energy resources to be exploited, hydroelectricity is the low-hanging fruit of the renewable world. It’s steady, self-storing, highly efficient, cost-effective, low-carbon, low-tech, and offers a serious boon to water skiers. I’m sold! Let’s have more of that! How much might we expect to get from hydro, and how important will its role be compared to other renewable resources?

Last week, as soon as I put tidal power into a box labeled “waste of time,” I received some deserved howls of protest. I saw it coming, and had built in words to soften the “waste of time” label. But it was a poor choice from the start. A better set of labels is “abundant,” “potent,” and “niche.” The last could also be thought of as “boutique,” in that it is cute, perhaps decorative, may serve some function, but will never be a heavy lifter. The “potent” label—formerly “useful”— is meant to indicate a source that could supply a healthy fraction (say over a quarter) of our global demand if fully exploited. We will never fully exploit any resource, so the numbers at least need to support ¼-scale before we can believe that it may play a major role.

I should also point out that all along, my approach is to pretend that our goal is to keep up our current energy standards in a post-fossil-fuel world. In the process, we will see just how hard that will be to do. It is by no means impossible, but it’s much more difficult and compromised than most people realize. In the end, it is not clear that we will maintain our current global rate of energy usage: the future is unwritten. On the plus side, some of the approaches I cast into the “niche” box may become “potent” in a scaled-down world. Firewood was once abundant, then moved to potent, and is now a niche. But a reversal of fortunes could change all that.

Continue reading

Views: 26091

Can Tides Turn the Tide?

[An updated treatment of some of this material appears in Chapter 16 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Now is the time on Do the Math when we scan the energy landscape for viable alternatives to fossil fuels. In this post, we’ll look at tidal power, which is virtually inexhaustible on relevant timescales, is less intermittent than solar/wind (although still variable), and uses old-hat technology to make electricity. For this exercise, we mainly care about the scale at which the alternatives can contribute, leaving practical and economic considerations sitting in the cold for a bit (spoiler alert: most are hard and expensive). Last week, we looked at solar and wind, finding that solar can satisfy our current demand without batting an eyelash, and that wind can be a serious contributor, although apparently incapable of carrying the load on its own. Thus we put solar in the “abundant” box and wind in the “useful” box. There’s an empty box labeled “waste of time.” Any guesses where I’m going to put tidal power? Don’t get upset yet.

Continue reading

Views: 2276

Wind Fights Solar; Triangle Wins

[An updated treatment of some of this material appears in Chapters 12 and 13 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

For me, the most delightful turn of events in the ultimate nerd-song “Particle Man” by They Might Be Giants, is that after introducing (in order of complexity) particle-man, triangle-man, universe-man, and person-man—and learning that triangle-man naturally beats particle-man in a match up—we pit person-man against triangle-man to discover that triangle wins—again. In this post, we’ll pit solar against wind and see who wins.

I will take my usual approach and estimate what I can—as opposed to researching the results of detailed studies. It’s part of the process of personal mastery of the big-picture issues, while also providing a sanity-check. In exploring useful reactions to the looming peak oil crisis (or pick your favorite rationale for weaning ourselves from fossil fuels), an appropriate strategy is to assess ballpark capacities of the various options. Some will prove to be orders-of-magnitude more prodigious than we need, others will be marginal, and many will show themselves to be woefully inadequate to match the required scale. So the goal is to perform this crude sorting process into abundant, useful, and waste of time.

Continue reading

Views: 4485

Pump Up the Storage

If we adopt solar and wind as major components of our energy infrastructure as we are weaned from fossil fuels, we have to solve the energy storage problem in a big way. An earlier post demonstrated that we do not likely possess enough materials in the world to simply build giant lead-acid (or nickel-based or lithium-based) batteries to do the job. Comments frequently pointed to pumped hydro storage as a far more sensible answer. Indeed, pumped storage is currently the dominant—and nearly only—grid-scale storage solution out there. Here, we will take a peek at pumped hydro and evaluate what it can do for us.

Continue reading

Views: 63238