The Motion of the Ocean

With the exception of tidal energy, our focus thus far has been on land-based energy sources. Meanwhile, the ocean absorbs a prodigious fraction of the Sun’s incident energy, creating thermal gradients, currents, and waves whipped up by winds. Let’s put some scales on the energetics of these sources and see if we may turn to them for help. We’ve got our three boxes ready: abundant, potent, and niche (puny). Time to do some sorting!

Continue reading

Hits: 2534

Basking in the Sun

Who hasn’t enjoyed heat from the sun? Doing so represents a direct energetic transfer—via radiation—from the sun’s hot surface to your skin. One square meter can catch about 1000 W, which is comparable to the output of a portable space heater. A dark surface can capture the energy at nearly 100% efficiency, beating (heating?) the pants off of solar photovoltaic (PV) capture efficiency, for instance. We have already seen that solar PV qualifies as a super-abundant resource, requiring panels covering only about 0.5% of land to meet our entire energy demand (still huge, granted). So direct thermal energy from the sun, gathered more efficiently than what PV can do, is automatically in the abundant club. Let’s evaluate some of the practical issues surrounding solar thermal: either for home heating or for the production of electricity.

Continue reading

Hits: 16710

Warm and Fuzzy on Geothermal?

[An updated treatment of some of this material appears in Chapter 16 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

The Earth started its existence as a red-hot rock, and has been cooling ever since. It’s still quite toasty in the core, and will remain so for billions of years, yet. Cooling implies a flow of heat, and where heat flows, the possibility exists of capturing useful energy. Geysers and volcanoes are obvious manifestations of geothermal energy, but what role can it play toward satisfying our current global demand? Following the recent theme of Do the Math, we will put geothermal in one of three boxes labeled abundant, potent, or niche (puny). Have any guesses?

Continue reading

Hits: 2679

Nuclear Options

[An updated treatment of this material appears in Chapter 15 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

simpsons.wikia.com

A recent thrust on Do the Math has been to sort our renewable energy options into “abundant,” “potent,” and “niche” boxes. This is a reflection of my own mathy introduction to the energy scene, the result of which convinced me that we face giant—and ultimately insurmountable—hurdles in our quest to continue a growth trajectory. It is not obvious that we will even manage to maintain today’s energy standards. We have many more sources/topics to cover before moving on to the “now what” phase of Do the Math. Meanwhile, requests for me to address the nuclear story are mounting. So before readers become mutinous, I should interrupt the renewable thread to present my nuclear reaction. It’s a rich topic, and in this post I will only give a tutorial introduction and my big-picture take. A single post can’t possibly address all the nuances, so my main goal here is to demystify what nuclear is all about, build a vocabulary, and set a foundation for further discussion in later posts.

Continue reading

Hits: 20569

How Much Dam Energy Can We Get?

[An updated treatment of some of this material appears in Chapter 11 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Having now sorted solar, wind, and tidal power into three “boxes,” let’s keep going and investigate another source of non-fossil energy and put it in a box. Today we’ll look at hydroelectricity. As one of the earliest renewable energy resources to be exploited, hydroelectricity is the low-hanging fruit of the renewable world. It’s steady, self-storing, highly efficient, cost-effective, low-carbon, low-tech, and offers a serious boon to water skiers. I’m sold! Let’s have more of that! How much might we expect to get from hydro, and how important will its role be compared to other renewable resources?

Last week, as soon as I put tidal power into a box labeled “waste of time,” I received some deserved howls of protest. I saw it coming, and had built in words to soften the “waste of time” label. But it was a poor choice from the start. A better set of labels is “abundant,” “potent,” and “niche.” The last could also be thought of as “boutique,” in that it is cute, perhaps decorative, may serve some function, but will never be a heavy lifter. The “potent” label—formerly “useful”— is meant to indicate a source that could supply a healthy fraction (say over a quarter) of our global demand if fully exploited. We will never fully exploit any resource, so the numbers at least need to support ¼-scale before we can believe that it may play a major role.

I should also point out that all along, my approach is to pretend that our goal is to keep up our current energy standards in a post-fossil-fuel world. In the process, we will see just how hard that will be to do. It is by no means impossible, but it’s much more difficult and compromised than most people realize. In the end, it is not clear that we will maintain our current global rate of energy usage: the future is unwritten. On the plus side, some of the approaches I cast into the “niche” box may become “potent” in a scaled-down world. Firewood was once abundant, then moved to potent, and is now a niche. But a reversal of fortunes could change all that.

Continue reading

Hits: 20714

Can Tides Turn the Tide?

[An updated treatment of some of this material appears in Chapter 16 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

Now is the time on Do the Math when we scan the energy landscape for viable alternatives to fossil fuels. In this post, we’ll look at tidal power, which is virtually inexhaustible on relevant timescales, is less intermittent than solar/wind (although still variable), and uses old-hat technology to make electricity. For this exercise, we mainly care about the scale at which the alternatives can contribute, leaving practical and economic considerations sitting in the cold for a bit (spoiler alert: most are hard and expensive). Last week, we looked at solar and wind, finding that solar can satisfy our current demand without batting an eyelash, and that wind can be a serious contributor, although apparently incapable of carrying the load on its own. Thus we put solar in the “abundant” box and wind in the “useful” box. There’s an empty box labeled “waste of time.” Any guesses where I’m going to put tidal power? Don’t get upset yet.

Continue reading

Hits: 1902

Wind Fights Solar; Triangle Wins

[An updated treatment of some of this material appears in Chapters 12 and 13 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

For me, the most delightful turn of events in the ultimate nerd-song “Particle Man” by They Might Be Giants, is that after introducing (in order of complexity) particle-man, triangle-man, universe-man, and person-man—and learning that triangle-man naturally beats particle-man in a match up—we pit person-man against triangle-man to discover that triangle wins—again. In this post, we’ll pit solar against wind and see who wins.

I will take my usual approach and estimate what I can—as opposed to researching the results of detailed studies. It’s part of the process of personal mastery of the big-picture issues, while also providing a sanity-check. In exploring useful reactions to the looming peak oil crisis (or pick your favorite rationale for weaning ourselves from fossil fuels), an appropriate strategy is to assess ballpark capacities of the various options. Some will prove to be orders-of-magnitude more prodigious than we need, others will be marginal, and many will show themselves to be woefully inadequate to match the required scale. So the goal is to perform this crude sorting process into abundant, useful, and waste of time.

Continue reading

Hits: 3537

Pump Up the Storage

If we adopt solar and wind as major components of our energy infrastructure as we are weaned from fossil fuels, we have to solve the energy storage problem in a big way. An earlier post demonstrated that we do not likely possess enough materials in the world to simply build giant lead-acid (or nickel-based or lithium-based) batteries to do the job. Comments frequently pointed to pumped hydro storage as a far more sensible answer. Indeed, pumped storage is currently the dominant—and nearly only—grid-scale storage solution out there. Here, we will take a peek at pumped hydro and evaluate what it can do for us.

Continue reading

Hits: 42306

The Biofuel Grind

[An updated treatment of some of this material appears in Chapter 14 of the Energy and Human Ambitions on a Finite Planet (free) textbook.]

When we enter the decline phase of conventional oil—likely before 2020—we will scramble to fill the gap with alternative liquid fuels. The Hirsch Report of 2005, commissioned by the U.S. Department of Energy, took a hard look at alternatives that could respond to the scale of the problem in time to have an impact. Not one of the approaches deemed to be currently viable in the report departs from fossil fuels. But what about biofuels? To what extent can they solve our problem? We’ll dip our toes into the math and see where a first-cut analysis leaves us.

Continue reading

Hits: 2604

Growth Has an Expiration Date

Just a quickie.  A few weeks back, I tried to cram four Do the Math posts into a 20 minute talk, delivered at the Compass Summit.  For those of you who would rather watch 23 minutes of video than sit down to read four posts, here is a link to the video of the talk.  Perhaps you’ll see why I should stick to writing.

Growth Has an Expiration Date from Compass Summit on FORA.tv

Hits: 865